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An experimental and analytical investigation is conducted into the dynamics of 
small, non-spherical, rigid particles suspended in a flow that is time-dependent from 
the point of view of the particle, which may be moving. The particles are unaffected 
by Brownian forces. Of special interest in this study are flows that are time-periodic 
in the Lagrangian frame ; this allows for the use of mathematical tools that have been 
developed for periodically forced differential equations, and for precise and well- 
characterized experiments. For some classes of periodic flows, it is shown that there 
exists a global periodic attractor for the orientation dynamics of particles that follow 
a given particle path, i.e. there is 1 : 1 phase locking of the orientation dynamics with 
the forcing. This is an important situation because it leads to a strong ordering of an 
ensemble of particles that follow the same particle path as the flow ; such order has 
significant ramifications for stress and birefringence. In  other classes of periodic 
flows, no such attractor exists ; therefore, an ensemble of random initial orientations 
of the particles on a particle path will not converge and disorder is maintained. 
Experiments are performed using a computer-controlled four-roll mill to create well- 
characterized flows in which these various types of dynamical behaviour are realized. 

1. Introduction 
In this paper, we consider the dynamics of small, non-spherical, rigid particles 

suspended in flow fields that are unsteady from the point of view of the particle. Our 
objective is to pursue some of the dynamical possibilities suggested in a recent 
theoretical analysis of a model microdynamical system by Szeri, Wiggins & Leal 
(1991), which we refer to hereinafter as SWL. This model system describes the 
dynamical behaviour of a stretchable, orientable particle suspended in a flowing 
fluid. The particles in the theory and in the experiments we report here are assumed 
to be small with respect to lengthscales of the surrounding flow ; thus the Reynolds 
number based on the lengthscale of the particle is small. Note that this does not 
require the Reynolds number based on the lengthscale of the surroundingflow to be 
small. 

Our primary goal is to understand better the behaviour of dilute suspensions of 
particles. By definition, these suspensions are dilute because the particles are non- 
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interacting ; therefore the dynamical behaviour of each particle is not coupled to that 
of the others. For this reason, i t  is profitable to study the dynamics of individual 
particles. 

The general problem we address has received much attention in the special case 
when the flow field is steady in the Lagrangian frame that follows the particle. Jeffrey 
(1922) derived the evolution equations for the orientation of an ellipsoidal particle in 
a steady, uniform shear flow. The associated dynamical behaviour was found to be 
one of two possible varieties: particles of finite aspect ratio rotate periodically 
following ‘Jeffrey orbits ’, whereas particles of infinite aspect ratio align with the flow 
direction. Bretherton (1962) extended the analysis of Jeffrey to include the 
orientation dynamics of particles of more general shapes in a steady, uniform shear 
flow. Bretherton found that the details of the shape of the particle were not as 
important as its symmetries. For example, any axisymmetric particle is found to  
have the same dynamical behaviour in a steady, uniform shear flow as an equivalent 
ellipsoidal particle. 

The dynamical behaviour of particles is much richer in unsteady flows, or more 
specifically in flows that are unsteady in the Lagrangian frame. The reason is that the 
orientation dynamics of the particle are forced by the surrounding fluid flow, and the 
forcing changes over time. 

The primary questions that interest us are the conditions for the existence of 
different types of behaviour in flows that are time-periodic from the point of view of 
the (perhaps moving) particle: in particular the presence or absence of globally 
attracting periodic orientations. Because a global periodic attractor is defined over 
the entire path of the particle, it constitutes a global description of the orientation 
dynamics of all particles that follow the same path. The physical manifestation of a 
global periodic attractor for the orientation dynamics is that everywhere along the 
particle path, there is a favoured orientation of particles (order), which changes, 
generally, along the particle path. Such a global periodic attractor may be found by 
consideration of the dynamics of a single particle, although the presence or absence 
of such an attractor is of greatest importance when one considers an ensemble of 
particles as in a suspension. In  this study, where we consider only one particle a t  a 
time, we observe the dynamics of an ensemble of particles that follow a given particle 
path by repeating experiments with different initial orientations and simply 
superposing the results. 

If the initial state of orientation of the particles in an ensemble is disordered, even 
isotropic, then a global periodic attractor in the orientation dynamics will cause a 
convergence of the orientations of the individual particles that follow a given path. 
In other words, a global periodic attractor for the orientation dynamics leads to  
order in an ensemble of particles. Note that the word ‘global’ refers to  the product 
of conformation space and time, and not to physical space. In certain instances, we 
may find attractors that are global in physical space also, as we shall see. This order 
yields two important, measurable bulk effects : (i) the (non-Newtonian) stress 
contribution of the particles will be anisotropic, and (ii) there will be birefringence in 
systems that exhibit this phenomenon. A more subtle effect of the existence of a 
global periodic attractor for the orientation is that individual particles forget their 
initial orientations through a process that does not involve Brownian diffusion. 
These conclusions are, of course, subject to the assumption of non-interaction of the 
particles. 

Conversely, if there is no such attractor for the orientation dynamics, then a 
disordered initial state of an ensemble of particles will be maintained along the 
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particle path through time. Furthcrmorc, individual particles will forever remember 
their initial conditions, unless there is some Brownian diffusion present. 

Attractors for the orientation dynamics are of importance in any type of two- 
dimensional flow, steady or unsteady. We do not analyse steady flows here because 
the dynamics of particles in these flows are wcll characterized ; see SWL for a review 
of the results in two-dimensional flow fields. Dynamical behaviour is not so well 
charactcrizcd in general, unsteady two-dimensional flows. In the present study, we 
choose to Concentrate on time-periodic flows for two reasons. First, time-periodic 
flows are an important class of flows in technological applications, because they 
include steady (in a laboratory framc), rccirculating flows with spatially inhomo- 
geneous velocity fields. Secondly, thcsc flows are mathematically attractive to 
study because the periodic nature of the flow allows us to make use of mathematical 
techniques developed for the treatment of periodically forced ordinary differential 
equations. 

In  $2 we give a brief review of thc analysis in SWL of the dynamics of particles 
suspended in two-dimensional flows. We concentrate on the time-periodic case. There 
is a new discussion about rotation numbers, which allow one to classify, exactly, the 
orientation dynamics of a particle in a given time-periodic flow. We construct 
arguments to establish the various types of dynamical behaviour in general periodic 
flows. 

In  $3, we specialize our analysis to the dynamics of rigid particles in the test 
section of a four-roll mill. We consider examples of periodic flows that may be 
realized in the four-roll mill. These flows force some interesting particle dynamics. 
For some periodic flows, we are able to identify periodic attractors and we observe 
1 : l  phase locking, whereas for other ‘nearby’ flows, the test particle tumbles 
irregularly. 

Section 4 is the experimental part of the paper, in which we describe our efforts to 
observe the predictions of the theory for the example flows analysed in $3. 
Measurements of the orientation of the particle are taken from photographs of the 
particle made during its dynamical evolution. In  $5, we give our conclusions. 

2. The dynamics of particles in unsteady flows 
In  this section we review the analysis of SWL, as it applies to  rigid particles 

suspended in a flow. In  what follows, we assume that the particle in question follows 
the same path as a fluid element. There is an important distinction to  be made 
between flows that are unsteady from the point of view of the (moving) particle, and 
those that are steady from this point of view ; we refer to such flows as complex and 
simple flows, respectively. Complex flows are unsteady in a Lagrangian frame of 
reference; simple flows are steady. Of course, simple flows arc a special case of 
complex flows. 

2.1. The orientation evolution equations 
Jeffrey (1922) and Bretherton (1962) have demonstrated that the evolution of the 
orientation of an axisymmctric rigid particle may be described by the vector 
equation 

(2.1) 

The particle is assumed to  be small with respect to lengthscales of the surrounding 
flow, and unaffected by Brownian forces. The axial (state) vector R gives the 
instantaneous orientation of the particle. 52 and E are the vorticity and rate-of-strain 

d 
- R  = K.R-K:RRR,  
dt 

K = 52+GE. 
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FIGURE 1 .  Definition sketch of the configuration-space coordinates cr and 0. 

tensors, respectively, and the parameter G is the shape factor, which relates the 
dynamical response of the particle in question to that of an equivalent ellipsoid. The 
shape parameter normally varies between G = 0, which corresponds to a spherical 
particle, and G = 1, which corresponds to a particle with infinite aspect ratio. 
Physically, the shape factor accounts for the fact that particles of finite aspect ratio 
rotate less quickly in straining flows than a line element of the fluid. In other words, 
the competition between the vorticity tensor, which tends to rotate the particle, and 
the rate of strain tensor, which tends to align the particle along the principal strain 
axis, is modulated by the shape factor G. 

We restrict our analysis to the consideration of particles suspended in two- 
dimensional flows. We define the Cartesian coordinate system (x, y, z ) ,  where the flow 
occurs in the (x, y)-plane. Note, however, that the axial vector of the particle is free 
to move out of the plane. In these coordinates, the vorticity and rate-of-strain 
tensors may be written as 

0 -& 0 e + Y o  

a=[$ ; 01,  .=[; ;e 01. (2.2) 

These descriptions involve the flow parameters e (elongation), y (shear) and 
w (vorticity), which depend generally on time either because the flow is unsteady, or 
because of the motion of the particle through a steady, spatially inhomogeneous 
velocity field. 

We make use of a modified spherical polar coordinate system to describe the 
orientation of the particle. These coordinates are defined in figure 1. The coordinates 
are specified in such a way that when 8 = 0, the axial vector of the particle lies in the 
plane of the flow. The axial vector of the particle has Cartesian coordinates 

cos 0 cos 0- 
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If one substitutes (2 .2)  and (2 .3)  into (2 .1) ,  one may obtain separate evolution 

r? = +-Ge sin 2a+@y cos 2 a ,  ( 2 . 4 ~ )  

0 = -iG(e cos 2 u + h  sin 2 r )  sin 28. (2 .4b)  

The system (2 .4)  is a non-autonomous system of ordinary differential equations when 
the velocity gradient tensor is unsteady from the point of view of the particle. In 
general, equations (2 .4)  do not preserve volume in phase space; therefore we 
anticipate the importance of attractors for the orientation dynamics. 

In the very special case of simple flows, the system (2 .4)  becomes autonomous and 
may be integrated by quadrature. In either situation (simple or complex) we can 
exploit the fact that ( 2 . 4 ~ )  is uncoupled from (2 .4b) .  Thus we treat the dynamics of 
the in-plane orientation variable (a) first, and then consider what happens out-of- 
plane (0 ) .  

2.2.  Orientation dynamics i n  general complex f iws  

When the surrounding flow is simple, then there are two generic situations. In 
addition to the vorticity axis, which is never an attractor in two-dimensional flows, 
there is either no other equilibrium orientation, or there is a stable/unstable pair of 
equilibrium orientations in the plane of the flow. The globally attracting orientation, 
if it exists, may be identified by examining the eigenvalues of the system (2 .4)  
evaluated at  the equilibria. 

In complex flows, on the other hand, there may be an analogous attracting 
orientation (or orientations) for the particle. However, because the governing 
equation is non-autonomous, the attracting orientation will generally be time- 
dependent rather than steady. Thus, we are led to consider directly the relative 
approach or separation of two distinct orientation time-traces that are solutions of 
the system (2 .4) .  Two orientations experience a net convergence over a time interval 
[0, r]  whenever the quantity 

CE[r,(O), a,(O) ; r ]  = 

equations for the angular coordinates. These evolution equations are 

[2Ge(t) cos ( u l ( t )  + a 2 ( t ) )  + G y ( t )  sin (crl(t) + u 2 ( t ) ) ]  dt 

(2 .5)  
J: 

is positive. We refer to this quantity as the contraction exponent. It depends on the 
initial orientation of the two time-traces, on the time interval, and implicitly on the 
velocity gradient tensor seen by the two particles, which follow the same path. The 
time traces a t ( t )  of the two orientations must be determined by integration of ( 2 . 4 ~ ) .  
CE is called the contraction exponent because the difference of two orientations 
changes over the time interval [0, T] as 

tan [$a,(T) - a,(T))l = tan [i(a,(O) -a,(O))] exp (-CE[a,(O), ~ ~ ( 0 )  ; T]). (2 .6)  

A natural extension of this concept is to the approach or separation of nearby 
orientations. In  this situation, one can linearize (2 .6)  and obtain 

e(T) = ~ ( 0 )  exp (-nCE[a(O); r ] ) ,  ( 2 - 7 )  

where the nearby contraction exponent, 

[2Ge(t) cos 2 4 t )  + G y ( t )  sin 2a( t ) ]  dt, (2 .8)  T 
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distinguishes the approach or separation of integral curves near a curve of interest, 
u(t). In ( 2 . 7 ) ,  E ( t )  is a separation in orientation angle. 

If one computes the nearby contraction exponent for the full range of initial 
orientations 0 d u(0) < x, one may determine which integral curve(s) will attract the 
others. This procedure varies according to whether t'he flow parameters are periodic 
with period T (the special case we concentrate on in the present study), or non- 
periodic. 

The dynamics of the out-of-plane degree of freedom O ( t )  are integrable once the 
evolution of u(t) is understood. One can derive the solution 

tan O(T) = exp (-anCE[u(O); TI) tan O(0). (2.9) 

This equation relates the out-of-plane orientation a t  the end of a time interval to the 
initial out-of-plane orientation through the dynamics in u. We note in passing that 
attracting orientations (with nCE > 0) move toward the plane of the flow. 

2.3. Orientation dynamics in time-periodic Jlows 
Now we consider the situation that arises when the velocity gradient tensor seen by 
the particle has a periodic dependence on time. This important situation occurs in 
many instances, for example : when there are recirculating particle paths through a 
steady (Eulerian) flow, when a linear (spatially homogeneous) flow varies periodically 
in time, or when there is a steady Eulerian flow in a spatially periodic domain. The 
latter situation has been investigated as a model for flow in porous media by Nollert 
& Olbricht (1985), among others. 

The periodic nature of the variation of the velocity gradient tensor with time 
allows us to make use of some techniques from dynamical systems theory, such as the 
Poincare' map and rotation numbers of circle maps. The background of these ideas 
is discussed by Guckenheimer & Holmes (1990), by Wiggins (1988), and by Arnold 
(1988). The techniques employed below allow one to describe exactly dynamics that 
are forced in a time-periodic fashion. In our system, the dynamics of interest are the 
orientation of the particle as a function of time, forced by the time-periodic velocity 
gradient tensor. 

2.3.1. The Poincare' map 

By knowing how the orientation corresponding to every possible initial orientation 
evolves over one period of the flow, we know how the orientation evolves for all time, 
simply by concatenating the solutions for each period. This is the idea behind the 
Poincare' map, which is defined to  be a real-valued function (P) that is exactly 
equivalent to integrating the differential evolution equations forward for one 
period of the flow parameters, starting from any arbitrary initial orientation. 
Thus the Poincare' map evaluated a t  go gives the value of u a t  the end of the time 
interval uT = r ( T ;  go), say, for particles that  follow a given path. In  symbols, 
P(rr,) = a ( T ; a , ) .  A fixed point of k (integer) applications of the Poincark map 
corresponds to a periodic integral curve of the corresponding differential equation 
with a period kT. 

An important fact is that ( 2 . 4 ~ )  is periodic in the angle u and in time t ,  when the 
velocity gradient tensor seen by the particle is periodic with period T .  Just  as the 
angles u and g+ k x  are equivalent, for integer k ,  we also have equivalence of time t 
and t+kT,  as far as the differential equation is concerned. We can think of the 
integral curves of (2.4a) with periodic flow paramet,ers as lying on the surface of a 
torus (doughnut), which has coordinates u around one circular generator and t 
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around the perpendicular circular generator, as shown in figure 2. The Poincare' map 
is a map from one t = constant slice of the torus to the (same) slice t = constant + T, 
which is equivalent to t = constant because t is a cyclic coordinate. 

Owing to the nature of the vector field of ( 2 . 4 ~ )  on the torus, integral curves 
cannot cross one another. In addition the function P is one to one, onto, and 
differentiable with differentiable inverse (a diffeomorphism). 

2.3.2. Long-time behaviour of arbitrary initial orientations 

As we mentioned, a fixed point of the Poincare' map (P(u*) = a*) corresponds to 
a periodic integral curve of the corresponding differential equation. It can be shown 
that if there is a fixed point of P then all initial conditions are asymptotically periodic, 
i.e. an integral curve that begins at an arbitrary initial orientation will eventually be 
attracted to the periodic integral curve that corresponds to the (stable) fixed point 
of the Poincark map; physically, this is why a particle forgets its initial orientation 
in a flow where there is a global attractor for the orientation dynamics of particles 
that follow a given path. If there are no periodic points (for which Pk(u*) = u* with 
k 2 l) ,  then there are only complicated, non-periodic (irregular) orbits in the family 
of solutions to the underlying differential equation. Note that chaotic orbits are 
precluded in this system owing to the decoupling of the dynamics in u and 8. 

In  the case where the fluid flow is steady (in an Eulerian sense) and recirculating, 
a periodic integral curve of the orientation of period T has a special meaning. It 
corresponds to a steady orientation in an Eulerian sense. This means that if the 
orientation of the particles is periodic with the same period as the time it takes for 
the particles to return to the same spatial location, the orientation of the 
particles will appear to be constant in a laboratory frame of reference. Moreover, 
particles on the given path that begin at  an arbitrary initial orientation will be drawn 
to the global attractor. This is why order arises out  of a disordered initial ensemble 
of orientations. Thus finding globally attracting periodic integral curves will be of 
critical importance in applications, because when they exist, there is a final, ordered 
state of the system that is steady in an Eulerian sense, and extends over the entire 
particle path in question. 

We remark that neighbouring paths will generally have differing periods, differing 
velocity gradient tensors, and therefore differing dynamics. Only in flows with 
spatially homogeneous velocity gradient tensors are the orientation dynamics on one 
particle path shared by other particle paths. 

2.3.3. Identijcation of attractors for the orientation dynamics 

Now we move on to see how to find globally attracting periodic integral curves of 
( 2 . 4 ~ ~ ) .  The Poincark map (of the orientation dynamics of particles that follow a given 
particle path) is related to the nearby contraction exponent computed over the 
period of the flow, through 

dP 
- = exp (-nCE[u,; TI). 
duo 

The integral of this equation with respect to uo is 

P(g0)  = [exp (-nCE[h;TI)dA+P(O). 

Here P(0) is the Poincard map of the origin, a constant. Note that we chose to 
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FIQURE 2. A sketch of the space in which solutions of ( 2 . 4 ~ )  lie, when the local flow seen by the 
particles is periodic in time. 

/ 
I / I I  

/ 

6 0  

FIQURE 3. Qualitative form of the Poincar6 map of (2 .4u) ,  obtained as the map from a 
t = constant cross-section of the torus of figure 2 to itself. 

perform a definite integration starting from 0;  we could have based the integration 
at a different point, however. One can show that the Poincare' map takes values over 
the range P(0) < P(ao)  < P(0)  + R over its domain 0 < go < R. This argument is 
based on the strictly positive derivative of the map, and on the fact that the 
trajectories cannot cross. This is actually enough information to draw a qualitative 
picture of the Poincar6 map. The Poincare' map must appear like the sketch in figure 
3. This picture is drawn in a standard way, in which no distinction is made between 
equivalent angles such as cr = a + x  where 0 < a < R, and cr = a. For this reason, the 
images of the points 0 and R under the map are equal, and the curve runs off the top 
of the graph and jumps back onto the bottom. 

Fixed points of the Poincare' map are intersections with the line uT = cro (where 
uT = a(t = T ) ) ,  which is also drawn in figure 3.  If there are no intersections of P(ao)  
with the curve crT = cro, then there are no integral curves of period T of ( 2 . 4 ~ ) .  Note 
that there may, however, be integral curves of ( 2 . 4 ~ )  of period kT (k > 1) 
corresponding to  fixed points of k applications of the Poincar6 map. 

2.3.4. Rotation number of the Poincare' map 

The dynamical behaviour of a system that is governed by a map from the 
circle to the circle, as is our system (0 < cr < R), may be described compactly by the 
rotation number of the map. The rotation number of a circle map is a single number 
0 d p d 1 that characterizes the asymptotic behaviour of every possible orbit of the 
circle map. In  our case, where the circle map is a Poincare' map corresponding to a 
periodically forced differential equation, the rotation number characterizes the 
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asymptotic behaviour of every possible initial orientation of a particle on a given 
particle path. 

The definition of the rotation number of a circle map is as follows. First, choose an 
arbitrary point in the interval [O,a). Then split up the circle into two sections 
I ,  = [t, P([)) andI,  = [P(() ,  E ) ,  remembering that values of u that differ by an integral 
multiple of 7c are equivalent. Next, choose another point no. Define uk = Pk(a,) ,  i.e. 
uk is the kth iterate of the point uo. Then the rotation number is 

1 
p = lim - [cardinality {u, € I o ,  0 < k < n} ] .  

(We remind the reader that the cardinality of a set is the number of members.) Thus, 
the rotation number is the proportion of iterates of the point u, that fall in the interval I, ,  
as the number of iterations tends to infinity. I n  practice, the rotation number may 
be computed numerically, with relatively fast convergence. 

Now we move on to  describe the results about rotation numbers that will be of use 
to us. The first result we use is that  the rotation number is independent of the points 
( and u, used in its definition. Thus, for a single Poincar6 map the rotation number 
needs to be computed only for a single choice of 6 and u,. This result may appear 
quite startling a t  first glance; it may seem strange that the rotation number 
calculated from a single initial orientation could characterize the dynamics of every 
initial orientation. This strong result derives from the properties of the Poincare' 
map : i t  is one-to-one, onto, differentiable with differentiable inverse, and preserves 
the cyclic order of points. 

The second important result is that if the rotation number is 0 or 1, then there is 
a fixed point of the Poincar6 map P ,  i.e. a periodic orbit of ( 2 . 4 ~ )  of period T .  This 
is easy to see. If there is a fixed point in I, ,  then nearly all iterations will fall in I ,  
because arbitrary initial conditions are attracted to the fixed point ; thus p converges 
to 1. Alternately, if there is a fixed point in I , ,  then nearly all iterations will fall in 
I ,  because arbitrary initial conditions are attracted to the fixed point ; this results in 
p converging to  0. 

The third result is that if the rotation number is a rational number, say m / n  for 
m, n both integers, then there is a fixed point of P", or, equivalently a periodic point 
of P of period n.  Such a point corresponds to a periodic orbit of ( 2 . 4 ~ )  of period nT. 
Finally, the fourth result is that  if the rotation number is an irrational number, then 
the Poincare' map has no periodic point of any period. I n  this case the dynamics of 
the orientation governed by (2.4 a )  are strictly non-periodic. 

With this information in mind, we proceed to  analyse the dynamics of particles in 
periodic flows as follows. Consider a steady, recirculating flow with a spatially 
inhomogeneous velocity gradient tensor. The particle paths are nested, closed curves 
in the plane; these paths are periodic with a period that varies smoothly across 
particle paths. Along each particle path, particles see a time-periodic local flow. One 
could consider a 'master' Poincare' map for the orientation dynamics, which would 
depend on a parameter that  serves to  label the particle paths in the nested set. For 
a fixed value of the parameter, we would begin by computing (numerically) the 
rotation number of the Poincare' map for the in-plane orientation dynamics. If this 
rotation number is 0 or 1, there must be a fixed point of the Poincar6 map, which we 
may then proceed to find by the intersection of the Poincare' map P(u,) with the line 
uT = u,,. Furthermore, we could compute the attractor that  passes through go.  

If, however, the rotation number converges to  a value different from 1, then it is 
either rational or irrational. Of course, one cannot tell whether the rotation number 

n+m 
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FICXRE 4. Geometry of the four-roll mill used in the experiments. 

is rational or irrational, considering the finite precision of the numerical calculation. 
But suppose that the rotation number varies smoothly over a range of the parameter, 
i.e. across particle paths. Then we may conclude that, it takes infinitely many rational 
and irrational values. It can be shown in such a situation that the set of parameter 
values that yield Poincard maps with irrational rotation numbers has positive 
measure. Thus if the rotation number varics smoothly over a range of the parameter, 
we can be certain that some parameter values will lead to irregular motion. 

Finally, we remark that there is one special situation where the rotation number 
gives information that is useful for the whole flow. This is, of course, the case of a 
spatially homogeneous velocity gradient tensor. 

3. Analytical study of particles suspended in the flow in a four-roll mill 
In  this section, we apply the ideas of the previous section to particles suspended 

in the flow in a four-roll mill. A four-roll mill is a particularly useful device because 
one may create nearly two-dimensional flow fields that are well-characterized as 
linear (spatially homogeneous velocity gradient tensor) in a small test section. A 
schematic diagram of the particular four-roll mill that  we use in the experiments of 
$4 is shown in figure 4. The flow device consists of a square array of cylinders 
arranged symmetrically in a square box that is filled with fluid. The test section of 
the device is the central portion between the cylinders. 

Although the discussion in $2 requires that the Reynolds number based on the 
particle lengthscale be small, it is not necessary that the Reynolds number based on 
the flow lengthscale be small. However, it is profitable to carry out our physical 
experiments in a boundary-driven flow at small (flow) Reynolds number. The reason 
for this is that  in such a situation, we have complete and virtually instantaneous 
control over the details of the flow in the test section by changing the motion of the 
boundaries; there is no time lag in tjhe control of the flow field owing to  inertial 
effects. In the four-roll mill, if the rollers rotate slowly enough, and if the carricr fluid 
of the suspension is viscous enough (ix.  if the flow Reynolds number is small), then 
the flow may be considered inertia-free, to a high degree of accuracy. 
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3.1, Governing equations 

In the central test section of the device, the flow is approximately linear and two- 
dimensional. We define a Cartesian coordinate system in which the flow occurs in the 
(x, y)-plane, shown in figure 4. As is well known, the velocity gradient tensor may be 
written in terms of a single flow-type parameter, a,  and the strain-rate t ,  in the form 

(3.1) 
l+a -(ct-1) 0 

V u = &  a-1 -(l+a) 0 + O ( x , y ) .  

The flow-type a ranges between - 1  (purely rotational flow) and + 1  (purely 
extensional flow) ; in the case where the rollers change speed, the flow-type a may be 
a function of time. The stream function corresponding to the flow in the test section 
is 

$(x, y, t )  = t ( t )  (1 + a @ ) )  x y +  t ( t )  (1 -a( t ) )  ( $ x 2 + h y e )  + O(x3,  x2 y, xy2, y3). 
One may compute the flow parameters, e,  y and w ,  which are required in (2.4) : 

Note that the axes we have chosen coincide with the principal axes of the rate-of- 
strain tensor ; this was not necessary for the application of the theory. We remark 
that the spatial location of the centroid of the particle is unimportant to the 
dynamics, because the velocity gradient tensor is spatially homogeneous within the 
test section. Therefore the dynamics of a particle are independent of its spatial 
location, provided, of course, that the particle remains in the test section of the flow 
device, where the flow is approximately linear. 

The evolution equations for the orientation of the particle corresponding to the 

(3.3a) 
system (2.4) are 

(3.3b) 

When the particle is an ellipsoid, the shape factor C is known as a function of the 
aspect ratio. When this is not the case, the dynamics of a general axisymmetric 
particle are identical to the dynamics of some equivalent ellipsoid. The shape factor 
of the equivalent ellipsoid must be determined; this is discussed in the Appendix. 

3.2. Dynamics in time-periodic flows 
We consider two examples of the dynamics of rigid particles in time-periodic flows. 
In the first example, we observe that the dynamics in a time periodic flow are quite 
different than the dynamics in the time-averaged flow. In the second example, when 
there is a global periodic attractor, one can observe convergence of distinct initial 
orientations in a flow that rotates the particles. This latter effect is very different 
from the dynamics of particles in simple flows, where convergence of distinct initial 
orientations is observed only in flows that cause steady alignment of particles. 

All the mathematical results of this section axe computed for a particle with shape 
factor G = 0.59. This shape factor is close to that of the test particle used in the 
physical experiments of $4. Note, however, that the phenomena we investigate are 
not peculiar to particles of shape factor G = 0.59. 

Example 1 

Now we consider a one-parameter family of time-periodic flows that force a range 
of different dynamical responses of the particle. The flow is given by the unsteady 

(3.4) 
flow - type 

a(7) = 7 + 0.1 sin2 ~ 7 ,  

I [ o  0 0 

e( t )  = &( t )  [1 + a ( t ) ] ,  y( t )  = 0,  w ( t )  = 8 ( t )  [ a ( t ) -  13. (3-2) 

ri =+G(t)(a(t)-l)-$%(t)(l+a(t)) sin2a, 
= -tGB(t) (1 + a ( t ) )  cos 2a sin 28. 
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FIQURE 5. (a) Poincar6 map of the orientation dynamics of particles in the flow in a four-roll mill, 
with a given by (3.4) with p = 0.3. (b) Solutions cr(t)  for two different initial orientations, 
corresponding to (a). 

which depends on the real parameter 7,  and is periodic with period 1 in the non- 
dimensional time r = t i .  We have re-scaled time by the constant, arbitrary strain- 
rate. Thus the flow parameter 01 is periodic with forcing period Tf = t-' in the true 
time variable. In  what follows, the periods we report in this example are periods in 
the true time variable. The period of a periodic response will be denoted T,. 

Physically, increasing 7 causes an increase in the instantaneous value of a; thus, 
the flow is characterized by greater rate-of-strain relative to vorticity as 7 increases. 
We will show that as the parameter 7 increases from 0.1 to  0.3, the dynamics of the 
rigid particle change from irregular behaviour (non-periodic or asymptotically 
periodic with period T, = kTf, k > 1) to  regular behaviour (asymptotically periodic 
with period T, = q). Also, we will demonstrate that  the oscillatory part of the flow 
radically changes the apparent period of rotation of particles (T,) compared to the 
period of rotation in the steady flow where a = 7 or where a is the time-average of 
(3.4). 

The complicated nature of the governing equations (3.3) forced by the time- 
periodic flow with 01 given by (3.4) obstructs any attempt a t  integration in closed 
form. Therefore we resort to numerical integration by standard methods. We 
concentrate on the dynamics in the plane of the flow (as described by the dependent 
variable a) because the dynamics out of the plane of the flow are integrable once cr(t) 
is known; see (2.9). 

If we compute the final orientation after a complete period of the forcing t = T,, 
beginning a t  the range of initial conditions a(0) = 0 to x, we can assemble a Poinear6 
map that describes the dynamics in the plane coordinate a. The map for the case 
7 = 0.3 is shown in figure 5(a) .  Note the presence of two fixed points, where the 
Poincark map crosses the dashed line a ( t  = 0) = cr(t = 5"). One of these fixed points 
(a = 2.6 radians approximately) corresponds to  a globally attracting periodic 
integral curve and the other (a = 2.0 approximately) to  a globally repelling periodic 
integral curve. I n  figure 5 ( b ) ,  we have plotted two example solutions that begin a t  
the initial orientations a,, = O( = 7c) and a,, = 1. Note the quick approach of both 
orientations to the periodic attractor. Physically, the attractor is characterized by a 
slight (fine-scale) oscillation about a steady (cnarse-scale) alignment. There is no 
rotation of the particle once its orientation coincides with the attractor in this flow. 
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FIGURE 6. Poincar6 map of the orientation dynamics of particles in the flow in a four-roll mill, with 
a given by (3.4) with 7 = 0.1. ( b )  Solutions ~ ( t )  for two different initial orientations, corresponding 
to  (a). 
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FIGURE 7. Rotation number us. 7 for the orientation dynamics forced by the flow with a given 
by (3.4). 

In the case 7 = 0.1, we obtain the Poincar6 map shown in figure 6(a) .  This Poincar6 
map does not intersect the dashed line cr(t = 0) = a(t = q); thus there are no fixed 
points. Two example solutions, with initial conditions cro = 1 and go = 2 are shown 
in figure 6 ( b ) .  One can observe a slow drifting (coarse-scale) rotation coupled with 
a fast (fine-scale) oscillation in orientation. If the frequencies of these two motions are 
precisely commensurate, then the motion is periodic with some period T,  = k q ,  
k > 1. On the other hand, if the ratio of the two frequencies is irrational, then the 
motion will be non-periodic. In  fact, 7 = 0.1 is in the parameter range where the 
rotation number varies continuously, as we now show. 

A plot of the rotation number computed over the range of parameter 0.1 < 7 < 0.3 
is shown in figure 7. For values of the parameter rc = 0.21 < 7 < 0.3, there is 1 : 1 
phase locking of the orientation dynamics with the forcing, i.e. a global attractor 
exists and T,  = Tf .  For values of the parameter 0.1 < 7 < qc, the dynamics are either 
non-periodic or periodic with some period T, = kT,, k > 1. Thus there is a bifurcation 
to complicated dynamical response as 7 decreases through qc. 
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As we mentioned, i t  is easily seen from the time-traces of figure 6 ( b )  that the 
coarse-scale motion of the particles appears to be periodic, with a superposed fine- 
scale periodic motion. Only when the periods of these two motions are commensurate, 
is the total motion (coarse- and fine-scale) strictly periodic with some period 

= kTp, k > 1.  In an experiment, the fine-scale motion would be difficult to observe, 
and so one would only observe the coarse-scale rotation. It is therefore interesting to 
ask the following question: how docs the period of the coarse-scale rotation of a 
particle subjected to the time-dependent flow (3 .4)  differ from the period of rotation 
of the same particle in a ‘ nearby ’ steady flow. The period of the coarse-scale rotation 
for a particle subjected to (3 .4)  with 7 = 0.2 is T, = 92q. The period of rotation of a 
particle subjected to the steady part of the flow (3 .4)  with 7 = 0.2 is T, = 175’1. 
Finally, the period of rotation of a particle subjected to a = 0.25, the average value 
of a given by (3 .4)  with 1 = 0.2 over the time interval [0, Tp = C’], is Tp = 46Tp. Thus, 
if one neglected the time-dependent part of (3 .4) ,  the resulting period T, would be 
82 % in error. If one simply averaged the time variation of (3 .4) ,  the resulting period 
would be 50 70 in error. These same effects are observed in the experiments we report 
in $4.  

Example 2 

and flow-type 01 given by the following expressions 
I n  the second example, we consider the family of periodic flows with strain-rate 6 

(-1.0 nZi < f < (n+0.4)T, ,  
i ( t )  = 1, a(t)  =I 

-0.2 (,t+0.4)’r, d t < (n+l)T,,  

where n is a positive integer. It is more convenient to consider the following 
(equivalent) problem. The strain-rate and flow-type parameter are given by 

f -  1.0 

-0.2 

n d t < ( n + 0 . 4 ) ,  
i ( t )  = 7;, a(t)  =‘1 (3 .5)  

(7 )  +()A) < t < ( n +  1). 
This is a one-parameter family of periodic flows whcre the parameter is the forcing 
period itself ‘r, = i. If a were either - I for all timc (fully rotational flow), or -0.2 
for all time (predominantly rotational flow). wc mould observe the particle rotating 
periodically. with the period of responsc givrn by : 7:. = xi-’ and 5.78-’, respectively. 

It is reasonable that the response' of the particle should be different in flows that 
are identical exrept for the period of forcing because such flows involve an additional 
timescale besides the timescale of rotation of the particle in the steady flow a = - 1 
or -0.2. The additional timescale is the period of the forcing. The situation here is 
somewhat analogous to chaotic partide paths in the blinking vortex (Aref 1984). 
There. an irregular particle path is ~~roduccd by subjecting a fluid particle to a 
periodic repetition of flows, in each of I\ hich the motion is regular. The analogy lies 
in the fact that an irregular motion is produced by adding another timescale to the 
problem. 

This family of flows is particularly intcrcsting h c c ~ ~ s e  the time average of the flow- 
type a (which is -0.52) is independent of the forcing period q. Thus, different 
members of this family of flows differ only in the rate of deformation 6 ,  but not in the 
flow-type, i.e. not in the ratio of rate-of-strain to vorticity. Despite this fact, we shall 
demonstrate that the dynamics can be markedly different for different periods of the 
forcing. In  particular, we observe that for 0 < T, < 3.7,  the particle exhibits irregular 
rotation, which is either non-periodic or periodic with long period (T, = kTp, k > 1). 
For forcing periods in the range 3.7 < Ti < 4.9, however, the motion consists of 
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FIGURE 8. (a )  Poincare map of the orientation dynamics of particles in the flow in a four-roll mill, 
with a given by (3.5) with T, = 3. (b) Discrete-time snapshots of ~ ( t )  for three different initial 
orientations, corresponding to (a) .  
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FIGURE 9. (a) Poincare map of the orientation dynamics of particles in the flow in a four-roll mill, 
with a given by (3.5) with = 4.5. (b) Discrete-time snapshots of ~ ( t )  for three different initial 
orientations, corresponding to (a ) .  

regular rotation after an initial, irregular transient, i.e. all motions are asymptotically 
periodic with T, = T,. For forcing periods exceeding % = 4.9 up to  at least 6, the 
motion is again irregular. 

As an example of irregular motion, consider the case T f  = 3. The Poincark map is 
shown in figure 8 ( a ) .  Note that there is no fixed point. Therefore, we except that this 
flow is not efficient a t  promoting order in an ensemble of particles with different 
initial orientations. Each particle rotates irregularly ; thus a picture of the solutions 
for several initial orientations would be confusing. Instead, in figure 8 ( b )  we show 
snapshots of the orientation angle a t  periodic intervals of length T,, for three particles 
that  begin a t  different orientations u,, = 0, 1 and 2. Note that the scatter of initial 
orientations is maintained over the time of the experiment (0 < t < 20%). Also, note 
that each particle remembers its initial condition. 

The situation is very different when Tf = 4.5. The Poincark map in figure 9 ( a )  
shows that there are two fixed points, one stable and one unstable ; thus there is 1 : 1 
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FIGURE 10. A plot of the parameter space of example 2, showing the region in which 1 : 1 phase 
locking is manifest. 

phase locking of the orientation response with the forcing. The attractor is an 
orientation that rotates over a period. For simplicity of interpretation we plot the 
orientation angle at every period of the flow for three different particles in figure 9 ( b ) .  
Note the strong tendency of the flow to orient the initially scattered ensemble of 
orientations. Note also that the particles quickly forget their initial conditions, 
despite the fact that there are no Brownian forces. This last example shown in figure 
9 is yet another illustration of the two most important concepts we want to stress in 
this study: (i) a global attractor in the orientation dynamics causes an ensemble of 
initial orientations to become ordered, and (ii) the presence of the attractor results 
in the forgetting of the initial orientations. 

Finally, in figure 10, we show which regions of parameter space (G, q) lead to 1 : 1 
phase locking for this example. Note that the range of forcing periods leading to  
phase locking is most broad when G = 1.  When G = 0, this range narrows to a point. 
This is due to the fact that  the anisotropic terms in (2.4a) are multiplied by G .  thus 
when G = 0, no anisotropy in particle evolution can develop. We note in passing that 
other regimes of 1 : 1 phase locking with Tp > 6 were found through numerical 
experimentation, but we did not pursue these. 

4. Experimental study 
I n  this section, we describe the experiments we conducted in a computer- 

controlled four-roll mill. We begin with a brief description of the apparatus. Next, we 
report the results of experiments corresponding to  examples 1 and 2 of $3. 

4.1, Apparatus 
The experiments were performed on a computer-controlled four-roll mill. This 
apparatus has been described in detail previously (Bentley & Leal 1986); a brief 
summary of the key components is included here. The four-roll mill is a device 
designed to generate a linear, two-dimensional flow. The velocity gradient tensor of 
this flow, is given by (3.1). Owing to the finite dimensions of the rollers, only a subset 
of the full range of flows is actually attainable in the laboratory. The apparatus used 
here produces flow fields that accurately approximate (3.1) for la1 > 0.2 in a region 
about (2.54 cm)2 around the stagnation point (the test section), that lies at the centre 
of the device. This particular apparatus is distinctive for two reasons : (i) the rollers 
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are driven by d.c. stepping motors that allow for accurate control of the flow field, 
and (ii) the particle position within the flow is tracked in real time by a camera and 
computer. 

The apparatus consists of four cylinders (rollers), 17.5 cm in length and 15.5 ern in 
diameter, positioned in a square array as shown in figure 4. The rollers are situated 
in a tank 49.5 cm x 49.5 cm and 17.5 cm in depth that is filled with Pale 1000 oil 
(Caschem, Bayonne, NJ), a polymerized castor oil. The oil is Newtonian with a 
viscosity of 364 Poise and a density of 1.02 g/cm3 at 22.5 "C. 

The apparatus is equipped with a digital video camera (a charge injection device 
(CID) Model TN2500, General Electric, Syracuse, NY). The video camera provides 
input to a Digital Equipment Corporation PDP 11/23 minicomputer, which serves 
to control the speed of the stepping motors. The computer analyses the video image 
and determines the centre of mass of the particle in the flow. This information may 
then be used, if desired, to correct the flow field to account for any disturbance of the 
particle from the stagnation point of the flow. 

When a > 0, and the flow is steady, a particle placed near the stagnation point 
translates away from that point in the direction of the outflow axis, and eventually 
out of the test section. In order to run experiments for extended lengths of time, the 
apparatus has been designed with a control scheme that serves to maintain the 
particle at the stagnation point in steady flows with a > 0. The details of the control 
scheme can be found in Bentley & Leal (1986). The control scheme adjusts the speed 
of the rollers so as to superimpose a constant (Galilean) correction to the flow field 
in order to maintain the particle at  the stagnation point. This is done in a way that 
maintains the same flow-type a and strain-rate 6 ;  the corrections to the flow field are 
small and imperceptible to the eye. This system can maintain a particle at the 
stagnation point indefinitely and thus permits experiments to be carried out over 
long periods of time (hours). One might be concerned that the additional, time- 
dependent flow due to the control scheme could have an adverse effect on our 
experiments. However, the orientation dynamics of the particle are forced by the 
velocity gradient tensor, which is insensitive to the addition of a Galilean flow field. 

The particle used in these experiments is a section of optical fibre that is roughly 
cylindrical in shape. A microscope photograph of the particle is shown in figure 1 1 .  
The particle has a diameter of 0.089 cm and a length of 0.165 cm which gives it an 
aspect ratio of 1.85. Our efforts at  determining the shape factor of the test particle 
are described in the Appendix ; at present, we simply quote the result G = 0.56 f 0.02. 
The density of the rod is slightly greater than that of the fluid ; consequently, the rod 
slowly sinks through the fluid during the experiment. However, owing to the high 
viscosity of the Pale 1000 oil, this sedimentation amounts to less than 10 cm over the 
course of a 1 h experiment. Finally, we remark that the Reynolds number based on 
the diameter of the particle is less than for the experiments we report below. 

4.2. Examples and discussion 
Now we report the results of physical experiments analogous to examples 1 and 2 of 
$3.2. The shape factor that we determined by experiment, G = 0.56f0.02, allows us 
to compare experimental and mathematical results computed for G = 0.59. 

Example 1 
The first example we consider is the family of time-dependent flows described by 

(3.4). The flow-type a consists of a constant part plus a sinusoidally varying part. We 
examined the dynamics of the particle orientation as the parameter 7 in (3.4) was 
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FIGURE 11. Microscopic photograph of the particle used in the experiments. See text for 
dimensions. 

varied. In particular, we wished to determine whether or not the particle rotates in 
the flow for a given and if so what is the period of rotation. Note that the control 
scheme was used during these experiments to maintain the particle a t  the stagnation 
point. 

We found that for 7 = 0.27 and 0.3 the particle in the time-dependent flow (3.4) 
rotated to a final (attracting) orientation and remained there, as in the mathematical 
solutions shown in figure 5 ( b ) .  The slight oscillations one notes in the mathematical 
solution proved to be too small to be observed in the physical experiment. 
In  contrast, continuous rotation of the particle was observed in a steady flow with 
a = 0.27. 

For values of 7 < 0.25 = rc,exp, particle rotation was observed, but the period 
of rotation was dramatically altered by the time-dependent forcing function. 
In  the flow with a = 0.25+0.1 sin2 (m), the period of rotation was measured as 
T, = 300T,( = 3006-l) compared to 206-' for a steady flow with a = 0.25. Clearly, the 
presence of the time-dependent forcing dramatically alters the period of rotation of 
the particles, in the same way as in the mathematical example in 33.2. 

Comparing to the mathematical prediction, we found that particles should 
experience coarse-scale rotation for values of the parameter 7 < 0.21, which is 
slightly less than the critical value of 0.25 that we found through experiment. This 
slight quantitative discrepancy is undoubtedly causcd by our uncertainty about the 
exact value of the shape factor. However, the qualitative agreement between the 
theory and experiment is excellent. 

Example 2 
In this example, we consider the orientation dynamics of the particle in the 

flow described by (3.5). For all values of the forcing period that we investigated 
(0 < Tf < 6), we found that the particle rotates, as was predicted. Because the 
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FIGURE 12. Experimental discrete-time snapshots of a(t) for different initial orientations of 
particles in the flow in a four-roll mill, with a given by (3.5) with T, = 3. 
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particle is always rotating, it is somewhat difficult to observe an attractor by looking 
at  a full time trace. Therefore, as in $3, we examine snapshots of the orientation a t  
each period of the flow. 

The particle was placed at  the stagnation point and subjected to the periodic flow 
described by (3.5). A photograph of the particle was taken at  the end of each period 
of the flow to allow for measurement of the orientation of the particle. This data was 
then compiled in order to construct an experimental discrete-time map of the 
orientation dynamics. 

One unexpected problem that surfaced during the course of the experiments was 
that the particle was eventually convected out of the test section of the device for 
some values of the period. Generally, it was observed that the centre of mass of the 
particle precessed around the stagnation point. For = 3.0 and 6.0 the distance of 
the particle from the stagnation point increased initially but then decreased. For 
these periods, the particle did not become removed from the stagnation point by 
more than about one particle length. In contrast, at  Tp = 4.5 and 5.0, the particle 
spiralled away from the stagnation point and out of the test section. This was 
unexpected, owing to the fact that steady flows with a < 0 have generally elliptical 
(compact) particle paths; in other words points near the stagnation point at the 
centre of the flow device remain close. Of course the example flow of (3.5) is 
not steady, but rather periodic in time. It is possible to show that although 
the stagnation point is stable (in the sense indicated) for the steady flows with 
a = -0.2 and a = - 1.0, the stagnation point is unstable for the periodic flow when 
3.562 < Tf < 5.786. This result is established as follows. When a = -0.2 (steady), it 
is a simple matter to integrate the particle-path equations for any initial location of 
the particle. This is also true for a = - 1.0. The particle path in the periodic flow may 
be found as the set of images of an initial location under a discrete-time map formed 
by concatenating the solutions over the two sub-intervals of flow given by (3.5). The 
map is linear without approximation, within the test section of the flow device. 
Finally, one computes the eigenvalues of this map at the stagnation point to check 
for stability; when 3.562 < Tp < 5.786, the stagnation point is found to be of saddle 
type. Thus, if the particle is placed near the stagnation point in the flow (3.5) with 
3.562 < Tp < 5.876, it  will be carried out of the test section of the flow device. This 
is but another example of the interesting and non-intuitive dynamics that arise in 
non-autonomous systems. 
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FIGURE 13. Experimental discrete-time snapshots of ~ ( t )  for different initial orientations of 
particles in the flow in a four-roll mill, with a given by (3.5) with T, = 4.5. 

The control scheme was designed to operate in flows with a > 0, as this is where 
the need for a control scheme was anticipated. Thus i t  is not available to us to 
prevent the particle from being convected out of the test section in the flow of 
example 2. This unfortunate fact restricts the length of time over which we can 
conduct experiments for periods in the range 3.562 < T, < 5.786. 

In figure 12, we show the experimentally determined discrete-time map for the 
orientation dynamics when = 3.0. This picture corresponds to the numerically 
generated map shown in figure 8 ( b ) .  The two figures are remarkably similar and 
clearly show that there is no attracting (period T,) orientation. That is to say, at the 
end of each period of the flow the orientation of each particle is different from that 
of the previous period. There is also no evidence to suggest that there is an attractor 
of period other than one, although in practice it is impossible to tell whether these 
are images of a non-periodic solution or one with a large period, as we have indicated. 

The experimentally determined discrete-time map for the orientation dynamics 
when T, = 4.5 is shown in figure 13. The dynamics here are vastly different from those 
of figure 12. In figure 13, a pattern of convergence of the ensemble of initial 
orientations is easily discernable, as in the corresponding, mathematical experiment 
shown in figure 9 ( b ) .  However, because the particle is quickly convected out of the 
test section of the flow device, it is not possible to follow the dynamics until full 
convergence onto the attractor is perceived. Periodic attractors were observed 
experimentally in this way for forcing periods of 4.0 and 4.5 but not for periods of 
3.0, 3.5, 5.0, or 6.0. This is in accord with our theoretical predictions. 

Finally, we would like to comment on an interesting connection between 
orientation dynamics and particle paths in this experiment. Recall that the Poincar6 
map of the particle paths has a saddle point at the origin when the forcing period is 
3.562 < Tp < 5.786. This parameter range corresponds exactly to the parameter 
range in which the orientation dynamics show evidence of 1 : 1 phase locking for 
particles with shape factor G = 1 (see figure 10). Particles with this particular shape 
factor respond dynamically just as a line element of the fluid ; thus it is natural that 
particle paths and orientation dynamics should be strongly related when G = 1. 

When G is different from 1 ,  the strong connection between particle paths and 
orientation dynamics is lost. The reason is that whereas particle paths evolve 
according to the velocity field, the difference between neighbouring particle paths 
evolves according to the gradient of velocity. Orientation dynamics evolves according 
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to the tensor K, defined in (2.1). When the shape factor G = 1, K and the velocity 
gradient tensor are one and the same ; thus the relative motion of nearby particles is 
related to the orientation dynamics of particles. When the shape factor G + 1, these 
two tensors (K and the velocity gradient tensor), and therefore the associated 
dynamics, are different. 

5. Conclusions 
In this study, we considered the orientation dynamics of a rigid particle in a flow 

field, with a view toward better understanding suspensions of such particles. The 
behaviour of individual particles in steady, spatially homogeneous flow fields has 
been well understood for some time; therefore we concentrated our efforts on the 
behaviour of particles in flows that are unsteady from the point of view of the 
particle. Restricting our inquiry to time-periodic flow fields allowed for the use of the 
mathematical machinery of Poincare' maps and rotation numbers in our study. 
Moreover, time-periodic flows proved to be convenient to reproduce in the laboratory 
in the four-roll mill. 

We found that the dynamics of rigid particles in time-periodic flows may be best 
understood on the basis of whether or not there is a global attractor for the 
orientation dynamics, where global refers to the product of conformation space and 
time. When there is such an attractor, a particle that begins at  a random initial 
orientation experiences a transient (non-periodic) response at  first, and then settles 
onto the global periodic attractor. This was demonstrated through mathematical 
and experimental examples. Furthermore, an ensemble of particles that follow the 
same (or equivalent) particle path(s) will undergo a strong ordering with regard to 
orientation, with important ramifications for the state of stress. A last significant 
point is that particles quickly forget their past configurations; thus memory is a 
dynamics-dependent as well as material-dependent phenomenon. 

Finally, we wish to emphasize that the attractors we have described, and therefore 
the associated order in the microstructure are phenomena that are global on the 
particle path in question. At  any point in apace and time along a particle path where 
there is a global attractor for the orientation dynamics, there is (i) a single attracting 
orientation and (ii) a locally ordered state of the particles given by the attractor. 

This work was supported, in part, by grants from the Office of Naval Research, 
and by the Fluid Mechanics Program of the National Science Foundation. 

Appendix. Determination of the particle shape factor 
In this Appendix, we describe our efforts to determine an appropriate shape factor 

G of the test particle. Using the four-roll mill, we have arrived at  two methods for 
the experimental determination of the shape factor. We describe these techniques 
first. Thereafter, we give the results of the experiments, and compare with analytical 
methods of establishing the shape factor. 

Method 1.  Orientation of the particle in a steady Jlow 
In the special case of a steady flow in a four-roll mill, there is a single attracting 
orientation whenever the discriminant 

D = G 2 ( 1 + a ) 2 8 2 - ( l - ~ ) 2 8 2  
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0.4 0.9 
G 

FIGURE 14. Equilibrium orientation (a) in degrees us. shape factor (G) for steady flow in a four- 
roll mill, a = 0.5. The upper branch, labelled g z ,  is the branch of globally attracting equilibria. 

0 0.7 
G 

FIGURE 15. Half-period of rotation (42') us. shape factor (G) for steady flow in a four-roll mill, 
with a = 0.2 and 8 = 1 .  

is positive. The stable, globally attracting orientation in this case is ((T, 0) = (a,*,O), 
where 

-G( 1 +a) + (G2( 1 +a)* - (1 
1-a - 1-a 

tan a: = 

Thus, for a given value of a, we can use the final, stable orientation of a particle in 
the flow to determine the shape factor. An example of this is given in figure 14, where 
we show the curve of equilibrium orientations versus shape factor G for a steady flow 
with a = 0.5. One need only observe the final orientation of the particle in an 
experimentally produced flow, and then read off the effective shape factor G .  

Method 2. Rotation of the particle in a steady flow 
Alternately, one can obtain the shape factor from the period of rotation of the 
particle in a steady flow with D < 0. The formula for the half-period of rotation +T 
is 

In figure 15, we have plotted the half-period +T as a function of shape factor G for 
flow-type a = 0.2 and t. = 1 .  To determine G, one simply measures the period of 
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U 

0.3 
0.4 
0.5 
0.5 
0.7 
0.8 

0.2 
0.2 
0.2 
0.22 
0.27 

Final 
Orientation” 

2.56 
2.72 
2.85 
2.85 
3.03 
3.07 

Period of 
rotationb G 

0.58 
0.58 
0.58 
0.58 
0.80 
0.70 

11.3 0.48 
13.2 0.54 
13.1 0.54 
14.6 0.53 
20.3 0.53 

“In radians; obtained by method 1 .  
In dimensionless time units ; obtained by method 2. 

TABLE 1 .  Experimental determination of the shape factor G 

rotation at a given a, and reads off the value of G from the curve. Clearly, this 
technique is accurate only for the range of G where there are significant changes of 
G with a. I n  figure 15, where a = 0.2, this range corresponds to  0.5 < G < 0.7. For 
other values of a, the range of accurate determination of G shifts. 

Experimental determination of the shape factor 
The shape factor G may also be determined by analytical means. The aspect ratio of 
the particle used in our experiments was 1.85; for ellipsoids of this aspect ratio, the 
shape factor would be G = 0.54. Using slender body theory, Cox (1971) has derived 
an expression for the equivalent (ellipsoidal) aspect ratio for particles with blunt 
ends. Because the aspect ratio of this rod is moderate, however, one can only hope 
to obtain a rough estimate of the shape factor using this technique. The equivalent 
aspect ratio for this particle is found by Cox’s method to be 2.92, which corresponds 
to a value G = 0.79. The broad range of shape factors obtained by analytical methods 
(0.54 to 0.79) indicates that  an experimental determination is required. 

In  experiments, i t  was observed that the rod exhibited a periodic rotation in the 
flow field for steady flows with a < 0.27. The period of this rotation was measured 
and found to be approximately constant over 10 periods. However, the rate of 
rotation of the rod was not steady but rather varied in systematic fashion 
reminiscent of ‘Jeffrey orbits’. For a 2 0.3, the rod rotated monotonically to a 
particular, steady orientation that depends on a. Based upon these results, the sign 
of the discriminant D must change between a = 0.27 and a = 0.3. This bounds the 
shape factor to  the range 0.54 < G < 0.58. 

The shape factor G can be obtained from steady experiments using methods 1 and 
2, outlined above ; see table 1 for the results of these experiments. The two methods 
gave very similar results, except for trials of method 1 with a = 0.7 and 0.8. The 
dissimilar results for a = 0.7 and 0.8 reflect the difficulty we had in accurately 
measuring the small angles of the final orientations of the particle. Moreover, small 
departures from axisymmetry or foreafter symmetry of the particle could have been 
reflected in the slight spread of the data. I n  summary, the best value of G we 
determined to be 0.56 & 0.02, which is quite close to that of an ellipsoidal particle of 
the same aspect ratio. 
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